Testing Homogeneity for Normal Mixture Models: Variational Bayes Approach
نویسندگان
چکیده
منابع مشابه
Variational Bayes for Hierarchical Mixture Models
In recent years, sparse classification problems have emerged in many fields of study. Finite mixture models have been developed to facilitate Bayesian inference where parameter sparsity is substantial. Classification with finite mixture models is based on the posterior expectation of latent indicator variables. These quantities are typically estimated using the expectation-maximization (EM) alg...
متن کاملTesting for homogeneity in mixture models
Statistical models of unobserved heterogeneity are typically formalized as mixtures of simple parametric models and interest naturally focuses on testing for homogeneity versus general mixture alternatives. Many tests of this type can be interpreted as C(α) tests, as in Neyman (1959), and shown to be locally, asymptotically optimal. A unified approach to analysing the asymptotic behavior of suc...
متن کاملVideo Segmentation via Variational Bayes Mixture Models
Video modeling is of interest for many applications, including video indexing, video data compression, object detection, unusual-event detection and object recognition. Many approaches employ local (pixelbased) models. In Stauffer and Grimson’s work on background modeling [14], the intensity or color of each pixel is modeled as a mixture of Gaussians, where each mixing component represents one ...
متن کاملVariational Bayes for Regime-Switching Log-Normal Models
The power of projection using divergence functions is a major theme in information geometry. One version of this is the variational Bayes (VB) method. This paper looks at VB in the context of other projection-based methods in information geometry. It also describes how to apply VB to the regime-switching log-normal model and how it provides a computationally fast solution to quantify the uncert...
متن کاملParsimonious reduction of Gaussian mixture models with a variational-Bayes approach
Aggregating statistical representations of classes is an important task for current trends in scaling up learning and recognition, or for addressing them in distributed infrastructures. In this perspective, we address the problem of merging probabilistic Gaussian mixture models in an efficient way, through the search for a suitable combination of components from mixtures to be merged. We propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
سال: 2020
ISSN: 0916-8508,1745-1337
DOI: 10.1587/transfun.2019eap1172